Synthesis of Fluorinated ReCl(4,4′-R₂-2,2′-bipyridine)(CO)₃ Complexes and Their Photophysical Characterization in CH3CN and Supercritical CO2

Mark D. Doherty, David C. Grills,* and Etsuko Fujita*

*Chemistry Department, Brookha*V*en National Laboratory, Upton, New York 11973-5000*

Received October 14, 2008

Two new $CO₂$ -soluble rhenium(I) bipyridine complexes bearing the fluorinated alkyl ligands $4,4'$ - $(C_6F_{13}CH_2CH_2CH_2)$ ₂-2,2'-bipyridine $(1a)$, and $4.4'$ - $(C_8F_{17}CH_2CH_2CH_2)$ ₂-2,2'-bipyridine $(1b)$ have been prepared and their photophysical properties investigated in CH₃CN and supercritical CO₂. Electrochemical and spectroscopic characterization of these complexes in CH₃CN suggests that the three methylene units effectively insulate the bipyridyl rings and the rhenium center from the electron-withdrawing effect of the fluorinated alkyl chains. Reductive quenching of the metal-to-ligand charge-transfer excited states with triethylamine reveals quenching rate constants in supercritical $CO₂$ that are only 6 times slower than those in $CH₃CN$.

Photochemical $CO₂$ reduction using tricarbonylrhenium(I) complexes with 2,2′-bipyridine (bpy) or a similar ligand has grown into an intense area of research, in large part because of the demand for renewable alternative fuel sources.^{1,2} In particular, the *fac*-ReX(bpy)(CO)₃ⁿ family of complexes (*n* $= 0$, $X = CI^{-}$, Br^{-} ; $n = +1$, $X = PR_3$) have been demonstrated to catalyze the reduction of $CO₂$ to CO under near-UV irradiation in *N*,*N*-dimethylformamide (DMF) in the presence of a sacrificial electron donor such as triethanolamine.^{1,3-9} While the quantum yield for formation of CO has been reported to be as high as 0.59 ,¹⁰ the turnover frequency of the catalyst is still too low for efficient photocatalytic conversion of $CO₂$.

Photoexcitation within the metal-to-ligand charge-transfer (MLCT) absorption band of the $\text{Re}^I\text{Cl(bpy)}(\text{CO})_3$ complex, followed by reductive quenching with amine and Cl^- loss, generates a 17e⁻ metal-based radical species [i.e., Re- $(bpy)(CO)₃$, which is often proposed as a key catalytic species. Kinetic studies indicate that loss of Cl⁻ is slow, as is the reaction with $CO₂$ in ordinary organic solvents such as DMF, tetrahydrofuran, and $CH₃CN$ because the metalbased radical forms a more stable solvated 18e⁻ ligand-based radical species, $Re(bpy^{\text{-}})(CO)_3(solv).$ ¹¹ Experimental and theoretical studies^{11,12} have shown that solvent coordination to the $Re(bpy)(CO)$ ₃ fragment inhibits rapid coordination of CO_2 ($k = 0.003$ s⁻¹ under 0.8 atm of CO_2) while also inhibiting $Re-Re$ bond formation in the absence of $CO₂$ (i.e., 8 orders of magnitude slower when compared to $Re(CO)_{5}$). While $Re(bpy)(CO)_{3}(CO_{2})$ or $Re(dmb)(CO)_{3}(CO_{2})$ $(dmb = 4.4′-dimethyl-2.2′-bipyridine)$ could not be observed using spectroscopic methods, the $CO₂$ -bridged dimer $(CO)_{3}$ (dmb)Re¹³C(O)ORe(dmb)(CO)₃ was detected by ¹H and 13C NMR, and this intermediate was shown to decay with a first-order dependence on $[CO_2]$ to produce $CO¹¹$ Therefore, the low pressures of $CO₂$ that are typically used when studying these reactions in organic solvents contribute to the extremely slow $CO₂$ reduction.

Inorg. Chem. **²⁰⁰⁹**, *⁴⁸*, 1796-¹⁷⁹⁸

Inorganic Chemis

In view of the above considerations, we decided to investigate the photocatalytic reduction of $CO₂$ in supercritical $CO₂$ (scCO₂). The first step toward this goal, reported herein, involved the synthesis and photophysical character-* To whom correspondence should be addressed. E-mail: dcgrills@
* To whom correspondence should be addressed. E-mail: dcgrills@

- (5) Ishitani, O.; George, M. W.; Ibusuki, T.; Johnson, F. P. A.; Koike, K.; Nozaki, K.; Pac, C.; Turner, J. J.; Westwell, J. R. *Inorg. Chem.* **1994**, *33*, 4712–4717.
- (6) Kutal, C.; Corbin, A. J.; Ferraudi, G. *Organometallics* **1987**, *6*, 553– 557.
- (7) Hawecker, J.; Lehn, J.-M.; Ziessel, R. *Hel*V*. Chim. Acta* **¹⁹⁸⁶**, *⁶⁹*, 1990–2012.
- (8) Kutal, C.; Weber, M. A.; Ferraudi, G.; Geiger, D. *Organometallics* **1985**, 2161–2166.
- (9) Hawecker, J.; Lehn, J.-M.; Ziessel, R. *J. Chem. Soc., Chem. Commun.* **1983**, 536–538.
- (10) Takeda, H.; Koike, K.; Inoue, H.; Ishitani, O. *J. Am. Chem. Soc.* **2008**, *130*, 2023–2031.
- (11) Hayashi, Y.; Kita, S.; Brunschwig, B. S.; Fujita, E. *J. Am. Chem. Soc.* **2003**, *125*, 11976–11987.
- (12) Fujita, E.; Muckerman, J. T. *Inorg. Chem.* **2004**, *43*, 7636–7647.

1796 Inorganic Chemistry, Vol. 48, No. 5, 2009 10.1021/ic8019556 CCC: \$40.75 [©] 2009 American Chemical Society Published on Web 01/28/2009

bnl.gov.

⁽¹⁾ Fujita, E.; Brunschwig, B. S. Homogeneous Redox Catalysis in $CO₂$ Fixation. In *Electron Transfer in Chemistry*; Balzani, V., Ed.; Wiley-VCH: New York, 2001; Vol. *⁴*, pp 88-126.

⁽²⁾ Arakawa, H.; Aresta, M.; Armor, J. N.; Barteau, M. A.; Beckman, E. J.; Bell, A. T.; Bercaw, J. E.; Creutz, C.; Dinjus, E.; Dixon, D. A.; Domen, K.; DuBois, D. L.; Eckert, J.; Fujita, E.; Gibson, D. H.; Goddard, W. A.; Goodman, D. W.; Keller, J.; Kubas, G. J.; Kung, H. H.; Lyons, J. E.; Manzer, L. E.; Marks, T. J.; Morokuma, K.; Nicholas, K. M.; Periana, R.; Que, L.; Rostrup-Nielson, J.; Sachtler, W. M. H.; Schmidt, L. D.; Sen, A.; Somorjai, G. A.; Stair, P. C.; Stults, B. R.; Tumas, W. *Chem. Re*V*.* **²⁰⁰¹**, *¹⁰¹*, 953–996.

⁽³⁾ Koike, K.; Hori, H.; Ishizuka, M.; Westwell, J. R.; Takeuchi, K.; Ibusuki, T.; Enjouji, K.; Konno, H.; Sakamoto, K.; Ishitani, O. *Organometallics* **1997**, *16*, 5724–5729.

⁽⁴⁾ Hori, H.; Johnson, F. P. A.; Koike, K.; Ishitani, O.; Ibusuki, T. *J. Photochem. Photobiol. A: Chem.* **1996**, *96*, 171–174.

be dissolved in scCO₂. Using CO₂ as both the solvent *and* reactant offers several potential advantages. In particular, it eliminates the possibility of solvent coordination to the metal center, and the $[CO_2]$ can be extremely high (ca. 22 M at 35 MPa). Furthermore, the physical properties of $\sec 0₂$ are easily tuned as a function of the temperature and pressure, and the whole process is more environmentally friendly.¹³ In an effort to investigate the effect of high $CO₂$ pressures on photochemical $CO₂$ reduction, Hori et al. prepared $CO₂$ soluble cationic rhenium phosphite complexes incorporating a fluorinated counteranion, such as $[Re(bpy)(CO)_3{P(OC_6-C_6)}]$ H_{13})₃}][B(3,5-(CF₃)₂-C₆H₃)₄].¹⁴ This complex was reported to reduce $CO₂$ to CO in liquid $CO₂$ under 365 nm irradiation in the presence of triethylamine (TEA) as an electron donor $(T = 28 \text{ °C}, p = 7 \text{ MPa}, \rho = 0.70 \text{ g cm}^{-3})$ with 2.2 total
turnovers after 2 h (TOE = 1.1 h⁻¹). Under more conventurnovers after 2 h (TOF = 1.1 h⁻¹). Under more conventional high-pressure two-phase conditions (high-pressure COtional high-pressure two-phase conditions (high-pressure $CO₂$ gas/DMF liquid), the related [Re(bpy)(CO)₃{P(O^{*i*}Pr)₃}][SbF₆] complex reduced $CO₂$ to CO under 365 nm irradiation in the presence of TEA with up to 3.4 total turnovers after 24 h $(TOF = 0.14 \text{ h}^{-1})^{15}$
While the addition

While the addition of a fluorinated counteranion imparts $CO₂$ solubility to the corresponding rhenium complex, this approach does not extend to the neutral, and perhaps most thoroughly studied, $ReCl(bpy)(CO)$ ₃ complex. Furthermore, the low catalytic activity of Hori's catalyst in liquid $CO₂$ might be due to precipitation of the photogenerated reduced neutral intermediate. Here we describe the synthesis and characterization of neutral $CO₂$ -soluble rhenium bipyridine complexes bearing fluorinated alkyl substituents. Such substituents are well-known to impart enhanced solubility to otherwise insoluble metal complexes in $\mathrm{scCO_2}$.¹³ The photophysical and photochemical properties of the complexes in $CH₃CN$ and $\sec O₂$ have also been determined and are compared with those of the unsubstituted bipyridine complex.

Fluorinated bipyridine ligands (N∧N) **1a** and **1b** were prepared as reported, $16,17$ followed by metalation with $ReCl(CO)$ ₅ in refluxing toluene to give the corresponding *fac*-ReCl(N^N)(CO)₃ complexes **2a** and **2b** (Chart 1).¹⁸ The ${}^{1}H, {}^{13}C[{^{1}H}],$ and ${}^{19}F$ NMR, IR spectroscopy, and elemental analysis results are consistent with the expected facial

(18) Caspar, J. V.; Meyer, T. J. *J. Phys. Chem.* **1983**, *87*, 952–957.

COMMUNICATION

geometry of the carbonyl ligands around a rhenium(I) center coordinated to chloride and 4,4′-disubstituted bipyridine ligands.¹⁹ The three methylene units separating the fluorinated alkyl chains from the bipyridine π system serve to insulate the bipyridine rings, and by extension the rhenium center, from the electron-withdrawing effect of the F atoms. This is reflected in the v_{CO} IR stretching frequencies, which do not change upon replacement of the 4,4′-H atoms in $ReCl(bpy)(CO)_{3}$ (2c) with either $-(CH_{2})_{3}C_{6}F_{13}$ or $-(CH_{2})_{3}$ - C_8F_{17} in **2a** and **2b**, respectively (Table 1). In addition, cyclic voltammograms for complexes **2a** and **2b** recorded in $CH₃CN$ indicate that the irreversible rhenium(I) oxidation peak at 1.35 V and the reversible N∧N reduction to form the N \triangle N radical anion at -1.40 V are virtually unchanged from those reported for **2c**²⁰ UV-vis absorption spectra in
CH.CN exhibit characteristic MLCT absorption hands at 368 CH3CN exhibit characteristic MLCT absorption bands at 368 nm for both **2a** and **2b** and corresponding emission maxima at 625 nm with emission lifetimes, *τ*em, of 30 ns. The photophysical characteristics of complexes **2a** and **2b** are practically identical. Therefore, only complex **2a** will be discussed further.

Dissolution of complex 2a in scCO₂ ($T = 35$ °C, $p = 13.8$) MPa) gives an intense yellow solution exhibiting v_{CO} stretching frequencies at 2028, 1933, and 1909 cm^{-1} , which are shifted to higher energy with respect to those recorded in $CH₃CN$. The corresponding $UV - vis$ absorption spectrum displays a +26 nm solvatochromic shift of the MLCT absorption band to 394 nm and a -15 nm shift of the emission maximum to 610 nm, with $\tau_{em} = 34$ ns. This slightly longer emission lifetime relative to that in CH_3CN^{21} can be attributed to the lower polarity of scCO_2 , which serves to raise the energy of the excited state, consistent with the blue shift of the emission in $\sec O_2$ and the energy-gap law.¹⁸

UV-vis transient absorption spectroscopy of a degassed CH3CN solution of complex **2a** after pulsed 410 nm laser excitation produces a spectrum within the experimental time resolution (<10 ns) with absorption bands at 375 and 475 nm.¹⁹ These bands, which together decay with a lifetime of 30 ns, are characteristic of an MLCT excited state and agree with those reported for **2c**. ²⁰ Consistent with these results, the UV-vis transient absorption spectrum in $\sec O_2$ exhibits absorption bands at 370 and 470 nm, which decay with a lifetime of 34 ns.^{19} Time-resolved IR (TRIR) spectra of the MLCT excited state of **2a**, formed after 410 nm laser excitation in a CH₃CN solution, exhibit three new $v_{\rm CO}$ bands at 2066, 1990, and 1956 cm^{-1} , which are shifted to higher energy relative to the ground state.¹⁹ These bands, which agree with those reported for **2c**, 11,22 are characteristic of an MLCT triplet excited state and reflect an increase in the C-O bond strengths, as a result of less back-bonding due to reduced electron density at the rhenium center in the excited state. The TRIR spectrum of **2a** in $\sec 0_2$ is shown in Figure 1 and exhibits similar excitedstate bands at 2065, 1991, and 1964 cm^{-1} .

- (20) Kalyanasundaram, K. *J. Chem. Soc., Faraday Trans. 2* **1986**, *82*, 2401– 2415.
- (21) Lifetimes in CH₃CN at 35 °C do not change significantly with respect to those recorded at 25 °C.
- (22) George, M. W.; Turner, J. J. *Coord. Chem. Re*V*.* **¹⁹⁹⁸**, *¹⁷⁷*, 201–217.

⁽¹³⁾ Jessop, P. G.; Ikariya, T.; Noyori, R. *Chem. Re*V*.* **¹⁹⁹⁹**, *⁹⁹*, 475–493.

⁽¹⁴⁾ Hori, H.; Koike, K.; Takeuchi, K.; Sasaki, Y. *Chem. Lett.* **2000**, 522– 523.

⁽¹⁵⁾ Hori, H.; Koike, K.; Suzuki, Y.; Ishizuka, M.; Tanaka, J.; Takeuchi, K.; Sasaki, Y. *J. Mol. Catal. A: Chem* **2002**, *179*, 1–9.

⁽¹⁶⁾ Bennett, B. L.; Robins, K. A.; Tennant, R.; Elwell, K.; Ferri, F.; Bashta, I.; Aguinaldo, G. *J. Fluorine Chem.* **2006**, *127*, 140–145.

⁽¹⁷⁾ Xia, J.; Johnson, T.; Gaynor, S. G.; Matyjaszewski, K.; DeSimone, J. *Macromolecules* **1999**, *32*, 4802–4805.

⁽¹⁹⁾ See the Supporting Information.

COMMUNICATION

Table 1. Photophysical, Electrochemical and Photochemical Properties of Re^ICl(N^N)(CO)₃ Complexes in CH₃CN and scCO₂

						TEA reductive quenching	
complex	solvent	$v_{\rm CO}$, cm ⁻¹	λ_{MLCT} , nm $(\varepsilon, \text{M}^{-1} \text{ cm}^{-1})$	$\lambda_{\rm em}$, nm $(\tau_0, \text{ ns})^d$	$E_{1/2}$, $\overset{b}{\vee}$ V	k_0 , M ⁻¹ s ⁻¹	K_{SV} , M^{-1}
2a	CH ₃ CN	2022, 1916, 1897	368 (4102)	625(30)	1.35^c , -1.40	2.5×10^{7}	0.76
	scCO^d	2028, 1933, 1909	394	610^{e} (34)		4.4×10^{6}	0.15
2 _b	CH ₃ CN	2022, 1916, 1898	368 (3794)	625(30)	1.35^c , -1.39	2.5×10^{7}	0.76
	scCO^d	2028, 1933, 1909	394	610^{e} (33)		4.2×10^{6}	0.14
2c	CH ₃ CN	2023, 1917, 1899	$370 (3420)^f$	625(27)	$1.36^{c}f$, -1.32^{f}	2.6×10^{7}	0.71
			$\ell_{1} = 410$ and $\ell_{2} = 6.0$ $\Gamma_{1} = 6.0$ $\Gamma_{2} = 6.0$ and $\Gamma_{3} = 1$ $\ell_{1} = 1$ $\ell_{2} = 0$ $\Gamma_{4} = 10$ $\Gamma_{5} = 0.0$ $\Gamma_{6} = 10$ $\Gamma_{7} = 10$				

 $a \lambda_{\text{ex}} = 410 \text{ nm}$. *b* vs SCE. *c* E_{pa} (V) with a scan rate of 50 mV s⁻¹. *d* 35 °C, 13.8 MPa. *e* Uncorrected. *f* See ref 20.

Figure 1. (a) Fourier transform IR (FTIR) spectrum of $2a$ in $\sec O_2$ (vs $\rm scCO_2$ background; 35 °C, 13.8 MPa). (b) Time-resolved step-scan FTIR spectrum recorded immediately after 410 nm laser excitation of this solution. Positive bands represent the excited-state species, while negative bands represent the ground-state bleach.

In order for **2a** and **2b** to act as effective photochemical $CO₂$ reduction catalysts, their MLCT excited states must be efficiently quenched in the presence of a suitable electron donor. Therefore, we determined the quenching rate constants with TEA by carrying out the emission lifetime measurements for $2a$ and $2b$ in CH₃CN and scCO₂ as a function of [TEA] (see Table 1).²³ A plot of τ_0/τ vs amine concentration for **2a**, as shown in Figure 2, is a straight line, the slope of which yields the Stern-Volmer constant, K_{SV} .¹⁹ K_{SV} reflects the efficiency with which an excited state is quenched, and the efficiency with which an excited state is quenched, and the quenching rate constant, k_q , can be obtained from K_{SV} = $k_q\tau_0$. Reductive quenching of the MLCT excited state of 2a by TEA in a degassed CH₃CN solution at 25 °C occurs with a rate constant k_q of 2.5×10^7 M⁻¹ s⁻¹, which corresponds to $K_{SV} = 0.76 \text{ M}^{-1}$. The unsubstituted bpy analogue, **2c**, exhibits similar quenching kinetics with TEA in degassed exhibits similar quenching kinetics with TEA in degassed CH₃CN, yielding a quenching rate constant of 2.6×10^7 M^{-1} s⁻¹ at 25 °C and $K_{SV} = 0.71$ M^{-1} . Upon changing to a $\sec CO_2$ solution of **2a**, the quenching rate constant, k_q , decreases by a factor of 6 to 4.4 \times 10⁶ M⁻¹ s⁻¹ at 35 °C, corresponding to $K_{SV} = 0.15 \text{ M}^{-1}$.²³

Figure 2. Stern-Volmer quenching of the emission from the MLCT excited state of **2a** by TEA in CH₃CN (*T* = 25 °C; K_{SV} = 0.76 M⁻¹) and scCO₂ (*T* = 35 °C $n = 13.8$ MPa; $K_{CV} = 0.15$ M⁻¹) $\lambda_m = 410$ nm $=$ 35 °C, $p = 13.8$ MPa; $K_{SV} = 0.15$ M⁻¹). $\lambda_{ex} = 410$ nm.

In summary, we have prepared two new fluorinated *fac*- $Re^{I}Cl(4,4'-R_{2}-2,2'-bpy)(CO)_{3}$ complexes (2a and 2b) and shown that their photophysical characteristics are virtually identical with those of the bpy analogue, **2c**, in CH₃CN. Reductive quenching of the MLCT excited state of **2a** and $2b$ in CH₃CN and scCO₂ has been examined, with quenching rate constants, k_q , only 6 times slower in $\sec O_2$ than in $CH₃CN$. Given the much lower polarity of scCO_{2} relative to $CH₃CN$, this relatively small difference in k_q is quite remarkable. These results indicate that **2a** and **2b** are excellent candidates as catalysts for the photochemical reduction of $CO₂$ to CO in sc $CO₂$. Preliminary photocatalysis experiments with these complexes show the formation of CO in both DMF and $\sec O_2$, while control experiments in argon-saturated DMF show no CO formation. Detailed results, including turnover numbers and kinetic studies, will be reported soon.

Acknowledgment. We thank Prof. Mike George and Dr. Alex Cowan (University of Nottingham, Nottingham, U.K.) for the provision of the high-pressure spectroscopic cell and for valuable discussions. This work was performed at Brookhaven National Laboratory and funded under Contract DE-AC02-98CH10886 with the U.S. Department of Energy.

Supporting Information Available: Complete experimental details, transient absorption spectra, TRIR spectra, and plots of τ_0/τ vs [TEA] for complexes **2b** and **2c**. This material is available free of charge via the Internet at http://pubs.acs.org.

IC8019556

⁽²³⁾ The $\sec O_2$ solution was visually confirmed to be a single phase at all concentrations of TEA examined.